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The First Total Synthesis of Natural
(+)-Terpestacin, Syncytium
Formation Inhibitor

Sir:

During the search for drugs to cure AIDS, Bristol-
Myers Squibb’s group has isolated terpestacin (1) from
culture broth of Arthrinium sp. as a novel syncytium
formation inhibitor, which is expected to be an anti-HIV
drug?, and determined the absolute structure mainly by
NMR studies and X-ray single-crystal analysis to be a
bicyclo 5, 15-fused sesterterpene 12). Independently, the
almost same compound has been reported as a phyto-
toxin from Bipolaris cynodontis®.

Very recently, we have synthesized racemic terpestacin
[(+)-1] from racemic 2-cyclopenten-1-yl acetic acid
[(+)-2] and E,E-farnesol through C-alkylation of the
tricyclic compound (+)-6 as shown in Scheme 1%,

Iodo-lactonization of (4)-2 followed by Sy2-type
hydrolysis and O-silylation gave the bicyclic f-alcohol
(4)-3, which was converted into the keto-ester (1)-4 in
seven steps. Michael addition of a vinyl group to (1)-4
furnished the enol ester (4)-5, which was led to the key
lactone (4)-6 in three steps.

The chain portion 8 was prepared as a single isomer
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from E,E-farnesol through the aldehyde 7 in six steps®.
The stereochemistry was not determined, since both
asymmetries at C1 and C2 would be lost later on (namely:
from 9 to 19).

The alkylation of (+)-6 with 8 was achieved in the
presence of Cs,CO; and Csl to give exclusively and
stereoselectively the desired C-alkylated product (+)-9,
which, in turn, was converted into terpestacin [(+)-1]
through the construction of proper configurations and
functionalities.

Herein, we describe the first and enantiospecific total
synthesis of natural terpestacin (1) to confirm the ab-
solute structure. Our synthesis was designed around the
use of tri-O-acetyl-D-galactal 10 as a chiral source to set
the key intermediate 6 and natural configurations.
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Conditions; (a) mCPBA, BF; - Et,0/CH,Cl,, 0°C, 0.5 hour (b) H,C = CHMgBr, Bu,P, Cul/Et,0, —78°C,
0.25 hour; 70% (c) 2% HCI-MeOH, rt, 10 hours; 80% (d) 1) (CH;0),C(CH;),, PPTS/CH,Cl,, rt, 2 hours
2) LIHMDS, Mel/THF, —78°C, 0.5 hour; 77% (e) 1) DIBAL-H/Toluene, —78°C, 0.5 hour 2) NaH, BnBr,
TBAI/THF, 50°C, 0.5 hour; 66% (f) 1) 80% AcOHagq, rt, 2 hours 2) NalO,/THF-H,0, rt, 2 hours; 88% (g)
LiHMDS, AcOMe/THF, —78°C, 0.5 hour; 78% (h) DMSO, DCC, Py-TFA/Et,O0, rt, 3 hours; 88% (i) 1) O,,
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then PPh,/CH,Cl,, —78°C, 2 hours 2) NaOMe/MeOH, rt, 2 hours; 70%.

The galactal 10 was oxidized to the lactone 11%, where
the vinyl group was introduced from the sterically
less-encumbered face to give 12 [EI-MS m/z 257
(M +H)*] in 70% yield in 2 steps (Scheme 2 and Table
1). The d-lactone 12 was de-O-acetylated to produce the
y-lactone 13 through ester migration. This lactone 13,
after protection of the diol, reacted with Mel also on the
less-hindered site to give stereoselectively 14. Hydride
reduction of 14 followed by O-benzylation gave pre-
dominantly the furanoside 15. Removal of the O-
isopropylidene group, periodate cleavage of the diol,
and reaction of the resulting aldehyde with lithiated
methyl acetate provided the hydroxy ester 16 [EI-MS

m/z 321 (M +H)*]. This was oxidized to the keto ester

17 [EI-MS m/z 318 (M*)] which, after ozonolysis,
underwent effective aldol condensation to give the
bicyclic compound 4 [EI-MS m/z 304 (M *)]. Conjugate
addition of a vinyl group to the convex face of 4 to give
5 (Scheme 1), followed by hydroboration and lactoniza-
tion, afforded the key compound 6 [EI-MS m/z 316
(M™")] as a diastereomeric mixture at C5. This mixture
was then submitted to the C-alkylation with the allyl

chloride 8 to give 9 [FAB-MS m/z 703 M +H)*] as
mentioned above. Compound 9 was converted into
natural terpestacin (1) by our previously reported pro-
cedures® except for stereoselective reduction of the
ketone 21 to the a-alcohol 22 as follows (Scheme 3).
Horner-Emmons cyclization of 18, which was derived
from 9 in 5 steps, afforded a single product 19 [FAB-MS
mjz 581 (M +H)*]. Selective hydride reduction at C7*
of 19, followed by O-silyl protection and LiAlH,
reduction, gave the primary alcohol 20, the relative
stereochemistry of which was confirmed by NOE
studies®. Compound 20 was converted into the ketone
21 through Wolff-Kishner reduction of the intermediary
aldehyde and MnO, oxidation of the allyl alcohol. The
stereoselective reduction in question of the C7 carbonyl
group of 21 was assayed under a variety of conditions.
The best result was realized by modified Noyori’s con-
ditions® using (S)-BINAL-H in CH,Cl,-THF (4:1)
to give a 5:1 mixture of a-alcohol (22) and f-alcohol,
while the racemic ketone [(+)-21] was reduced to a 2: 1
mixture of the alcohols. After reductive opening of the
furanose ring and selective O-benzoylation of the primary

t The carbon-numbering protocol parallels conveniently the nomenclature of the natural product 1.
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Table 1-1. Physico-chemical properties of compounds.

No. MP (°C) [*]o IH-NMR (270 or 400 MHz; CDCl,; § ppm; J Hz)
(CHCI,)
1 171~172 +27° 6098 (3H, 5), 128 3H, d, J=7.2), 1.62 3H, 5), 1.63 3H, 5), 2.37 (IH,

(c0.22)  dd, J=104, 13.8), 2.43 (1H, brd, J=16.8), 2.69 (1H, dd, J=2.4, 11.0),
3.80 (1H, dd, /=54, 11.0), 3.87 (1H, dd, J=5.2, 11.0), 4.04 (1H, dd,
J=3.0, 10.0), 5.12 (1H, m), 5.23 (1H, m), 5.39 (1H, m).
4 137~138 +68° é 1.14 (3H, d, J=7.2), 2.38 (1H, dq, J=1.2, 7.2), 3.08 (1H, ddd,
(c0.86) J=1.2,3.2,6.0),3.80 (3H, s), 4.24 (1H, d, J=13.4), 4.56 (1H, d,
J=13.4), 4.65 (1H, d, J=6.0), 4.91 (1H, s), 7.25 (5H, m), 8.33 (1H, d,
J=32).
9 Syrup - 0107 (3H, d, J=7.0), 1.23 (3H, dd, /=74, 9.0), 1.38 (3H, s), 1.56
(3H, s), 2.05 (3H, 5), 4.45 (2H, dd, J=3.2, 10.0), 4.79 (1H, d, J=9.8),
4.96 (1H, t, J=17.6), 5.03 (1H, t, J=6.4), 5.19 (1H, ddd, J=4.0, 10.0,
18.0).
11 Syrup —349° 4 2.10 (3H, s), 2.11 (3H, s), 4.36 (1H, d, J=6.2), 437 (1H, d, J=5.8),
(c1.12) 477 (1H, ddd, /=24, 5.8, 6.2), 5.30 (1H, dd, J=2.4, 5.6), 6.25 (1H, d,
J=9.2), 7.01 (1H, dd, J=5.6, 9.2).
12 Syrup +52° 207 (3H, s), 2.14 (3H, s), 2.63 (1H, dd, J=4.4, 17.8), 2.82 (1H, dd,
(c1.17)  J=6.4,17.8),2.92 (1H, m), 4.21 (1H, dd, /=7.0, 11.4), 4.27 (1H, dd,
J=5.6, 11.4), 4.67 (1H, ddd, J=3.2, 5.6, 7.0), 5.11 (1H, dd, J=3.0,
3.2),5.25 (1H, dd, J=1.6, 17.6), 5.33 (1H, dd, J=1.6, 10.4), 5.89 (1H,
ddd, J=5.6, 10.4, 17.6).
13 Syrup —50° 6 2.58 (1H, dd, J=9.0, 17.6), 2.75 (1H, dd, J=10.2, 17.6), 3.24 (1H,
(¢ 1.17)  m), 3.75 (2H, brs), 3.88 (1H, brs), 4.50 (1H, dd, J=2.0, 8.4), 5.24 (1H,
brd, /=17.8), 5.26 (1H, brd, J=8.6), 5.99 (1H, ddd, J=8.6, 9.6, 17.8).
14 112~113 -73° 0 1.18 (3H, d, J=6.8), 1.37 (6H, s), 2.77 (1H, dq, J=6.8, 13.6), 2.88
(c1.04)  (IH, dt, J=8.2, 13.6), 3.98 (1H, t, J=8.2), 4.06 (1H, dd, J=6.6, 8.2),
4.23 (1H, ddd, J=1.0, 6.6, 8.2), 4.35 (1H, dd, J=1.0, 8.2), 5.26 (1H,
dd, J=1.6, 11.0), 527 (1H, dd, J=1.6, 17.8), 5.92 (1H, ddd, J=8.2,
11.0, 17.8). ‘
15 Syrup +35° 4 1.05 (3H, d, J=6.8), 1.36 (3H, s), 1.45 (3H, s), 2.26 (1H, m), 2.50
(c1.27)  (I1H, dt, J=5.0, 9.6), 3.61 (1H, dd, J=6.8, 7.6), 4.00 (1H, dd, J=6.0,
7.6), 4.16 (2H, m), 4.51 (1H, d, J=12.2), 4.87 (1H, d, J=2.4), 4.89 (1H,
d, J=12.2), 5.03 (1H, dd, J=1.8, 17.6), 5.05 (1H, dd, J=1.8, 9.6), 6.00
(1H, ddd, J=9.6, 10.8, 17.6), 7.35 (5H, m).
16 Syrup +8.6° 6 1.06 (3H, d, J=1.6), 2.21 (1H, ddq, J=2.8, 7.2, 7.6), 2.54 (1H, dd,
(c1.33)  J=8.4,15.0), 2.62 (1H, dt, J=7.2, 9.6), 2.75 (1H, dd, J=3.0, 15.0),
294 (1H, d, J=3.0), 3.70 (3H, s), 4.03 (1H, t, J=7.2), 4.22 (1H, ddd,
J=3.0,72, 84),4.49 (1H, d, J=11.8), 4.75 (1H, d, J=11.8), 4.81 (1H,
d, J=28), 5.14 (1H, dd, J=1.2, 17.0), 5.16 (1H, dd, J=1.2, 9.6), 6.14
(IH, dt, J=9.6, 17.0), 7.33 (5H, m).
17 Syrup +93° 6 1.06 3H, d, J=17.0), 2.20 (1H, m), 2.77 (1H, m), 3.52 (1H, d, J=16.2),
(c199) 3.72(1H, d, J=16.2), 3.74 (3H, s), 4.58 (1H, d, J=11.6), 4.69 (1H, d,
J=8.4),4.93 (1H, d, J=11.6), 4.97 (1H, d, J=3.6), 5.08 (1H, dd,
J=1.6, 15.6), 5.09 (1H, dd, J=1.6, 11.0), 5.83 (1H, ddd, J=9.0, 11.0,
15.6), 7.36 (5H, m).
18 Syrup 6 0.97 (3H, d, J=7.0), 1.33 (6H, dt, J=5.0, 7.8), 1.37 (3H, s), 1.56 (3H,
s), 1.59 (3H, s), 2.75 (1H, ddd, J=1.4, 3.2, 16.0), 2.86 (1H, ddd, /=34,
8.0, 16.0), 3.24 (1H, dq, J=7.2, 25.4), 3.64 (3H, s), 4.46 (1H, d, J=5.0),
4.91 (1H, dd, J=5.0, 8.0), 5.04 (1H, t, J=6.0), 5.14 (1H, t, J=6.0),
7.35 (5H, m), 9.75 (1H, dd, /=14, 3.4).
19 140~ 141 +38° 6 1.02 (3H, d, J=17.0), 1.76 (3H, s), 3.40 (3H, s), 3.69 (3H, s), 4.44 (1H,
(c1.14)  d, J=12.0), 445 (1H, d, J=6.0), 4.66 (1H, d, J=7.0), 4.78 (1H, d,
J=6.0), 4.79 (1H, d, J=17.0), 4.82 (1H, d, J=12.0), 4.90 (1H, d, J=1.6),
4.92 (1H, t, J=6.0), 492 (1H, t, J=6.2), 5.34 (1H, t, J=8.0), 7.28
(5H, m).
20 Syrup +65° 4 1.06 (3H, d, J=7.6), 3.41 (3H, s), 3.54 (2H, brd, J=4.4), 3.85 (1H,
(c093) dd, J=3.8,10.6), 4.16 (1H, d, J=5.6), 4.67 (1H, dd, J=5.6, 6.4), 4.90
(1H, d, J=2.0), 497 (1H, d, J=8.4), 5.27 (1H, t, J=5.6), 5.48 (1H, t,
J=6.4).
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Table 1-2. Physico-chemical properties of compounds.

No. MP (°C)
F 7Syrup7
22 Syrup
23 Syrup

(CHCL,)

[2Ip

'H-NMR (270 or 400 MHz; CDCl,; 6 ppm; J Hz)

+20°
(c 0.65)

+26°

(c 0.25)

4 0.88 (3H, s), 1.05 (3H, d, J=7.0), 1.50 (3H, ), 1.58 (3H, s), 1.77 (3H,
$), 3.40 3H, ), 3.70 (1H, d, J=5.0), 4.68 (1H, dd, J=5.0, 7.2), 4.87
(1H, brs), 4.92 (1H, t, J=6.0), 5.33 (1H, t, J=6.4), 6.64 (1H, 1,
J=17.0), 7.31 (5H, m).

5 0.92 (3H, s), 1.06 (3H, d, J=7.2), 1.53 (3H, s), 1.59 (3H, s), 1.61 (3H
5), 3.43 3H, 5), 3.68 (1H, d, J=5.0), 3.97 (1H, dd, J=4.0, 11.6), 4.63
(1H, dd, J=5.0, 7.0), 4.90 (1H, d, J=3.0), 5.00 (1H, m), 5.35 (2H, m),
7.31 (5H, m).

8 1.10 (3H, s), 1.15 (3H, d, J=7.0), 1.63 (6H, s), 1.70 (3H, s), 2.80 (1H,
dd, J=10.4, 13.6), 3.67 (1H, brd, J=4.0), 4.09 (1H, dd, J=7.4, 11.0),
4.25 (1H, brs), 4.57 (1H, dd, J=3.2, 11.0), 5.15 (1H, dd, J=3.0, 7.0),
5.30 (1H, dd, J=4.0, 12.2), 5.34 (1H, m), 5.58 (1H, t, J=5.2).

>

Scheme 3.
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Conditions; (a) 1) NaBH,/MeOH, 0°C, 15 minutes 2) MOMCI, DIPEA/(CH,Cl),, 60°C, 1 hour; 92%
(b) 1) LiOHaq/MeOH, 60°C, 1 hour 2) Mel/HMPA, rt, 30 minutes; 80% (c) TPAP, NMO, MS-4A/CH,Cl,,
rt, 3 hours; 78% (d) DIPEA, LiCl/CH;CN, rt, 72 hours; 75% (e) 1) Li-n-BuBH,/THF, rt, 0.5 hour 2) TBSOTT,
2,6-lutidine/CH,Cl,, 0°C, 1 hour; 78% (f) LiAlH,/Et,0, 0°C, 15 minutes; 88% (g) 1) PDC, Zeolite/CH,Cl,,
rt, 2 hours 2) NH,NH, -H,0, NaOH/TEG, 190°C, 2 hours; 65% (h) 1) TBAF/THF, 60°C, 12 hours 2)
MnO,/CH,Cl,, rt, 48 hours; 92% (i) (S)-BINAL-H/CH,Cl,-THF =4: 1, —10°C, 1 hour; 90% (j) 1) 2Mm
HCI/THF, 60°C, 3 hours 2) NaBH,/MeOH, rt, 15 minutes 3) BzCl, Py, DMAP/CH,CI,, rt, 5 hours; 62%
(k) (COCI),, DMSO, Et;N/CH,Cl,, —78°C, 1 hour; 90% (1) 1M NaOHaq/MeOH, 50°C, 1 hour; 70%.
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and allylic hydroxy groups, the major a-alcohol was
isolated as the benzoate 23. Finally, the diol was oxidized
to the diketone, which naturally formed the keto-enol
structure, and the O-benzoyl groups were removed to
afford optically active terpestacin (1) [FAB-MS m/z 403
(M +H)*]. The synthetic (+ )-terpestacin (1) was iden-
tical with the natural product in all respects [MP 172~
173°C, [«]p +26° (CHCI,)]Y, completing the first total
synthesis of natural terpestacin.
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